1、故事:烧水的问题 有好事者提出这样一个问题:“假如你面前有煤气灶、水龙头、水壶和火柴,你想烧些水应当怎样去做?” 被提问者答道:“在壶中放上水,点燃煤气,再把水壶放到煤气灶上。” 提问者肯定了这一回答,接着追问:“如其他条件不变,只是水壶中已有了足够的水,那你又应当怎样去做? ” 这时被提问者很有信心地答道:“点燃煤气,再把水壶放到煤气灶上。” 但是提问者说:“物理学家通常都这么做,而数学家们则会倒去壶中的水,并声称已把后一问题转化成先前的问题。” 2、感悟: 数学家“倒去壶中的水”似乎是多此一举,故事的编创者不是要我们去“倒去壶中的水”,而是引导我们感悟数学家独特的思维方式──转化。 学习数学不是问题解决方案的累积记忆,而是要学会把未知的问题转化成已知的问题,把复杂的问题转化成简单的问题,把抽象的问题转化成具体的问题。数学的转化思想简化了我们的思维状态,提升了我们的.思维品质。转化不是就事论事、一事一策,而是发掘出问题中最本质的内核和原型,再把新问题转化成与已经能够解决的问题。 转化思想是数学的基本思想,它应贯穿在我们数学教学的始终。 3、数学名言 上帝总在使世界几何化。——柏拉图 数学是唯一好的形而上学。——开尔文 对外部世界进行研究的主要目的在于发现上帝赋予它的合理次序与和谐,而这些是上帝以数学语言透露给我们的。——开普勒 数可以说成是统治整个量的世界,而算术的四则可以被认为是作为数学家的完全的装备。——麦斯韦 整个数学所涵括的,正是组织起一系列协助我们思考过程中补助想象的工具。——怀特海 4、快速记住公式的方法 (1)归类记忆法 就是根据识记材料的性质、特征及其内在联系,进行归纳分类,以便帮助学生记忆大量的知识。比如,学完计量单位后,可以把学过的所有内容归纳为五类:长度单位;面积单位;体积和容积单位;重量单位;时间单位。这样归类,能够把纷纭复杂的事物系统化、条理化,易于记忆。 (2)歌诀记忆法 就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀:“量角器放角上,中心对准顶点,零线对着一边,另一边看度数。采用这种方法来记忆,学生不仅喜欢记,而且记得牢。 (3)规律记忆法 即根据事物的内在联系,找出规律性的东西来进行记忆。比如,识记长度单位、面积单位、体积单位的化法和聚法。化法和聚法是互逆联系,即高级单位的数值 ×进率=低级单位的数值,低级单位的数值÷进率=高级单位的数值。掌握了这两条规律,化聚问题就迎刃而解了。 |